Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
China Journal of Chinese Materia Medica ; (24): 1769-1782, 2021.
Article in Chinese | WPRIM | ID: wpr-879091

ABSTRACT

NAC(NAM/ATAF/CUC) protein plays an important role in plant growth and development, secondary cell wall formation and stress response. In this study, based on the sequencing data of Angelica dahurica, the NAC family was systematically analyzed using bioinformatics methods and its expression pattern was analyzed. Studies showed that 75 candidate genes had been selected from the NAC transcription factor family of A. dahurica, with the protein size of 148-641, all of which were unstable hydrophilic proteins. Most NAC proteins were localized in the nucleus, and had complete NAC domain. Phylogenetic analysis of NAC family proteins of A.dahurica and Arabidopsis thaliana showed that among the 17 subfamilies, NAC members were unevenly distributed in each subfamily, indicating that the evolution of species is developing in multiple directions. Among them, ANAC063 subfamily contained no NAC sequence of A. dahurica, which might be due to the functional evolution of the species. Analysis of protein transmembrane structure and signal peptide showed that NAC transcription factor could carry out transmembrane transportation, but its signal peptide function had not been found. Expression analysis showed that most transcription factors responded to abiotic stress and hormones to varying degrees, and the effects of hormones were obvious, especially ABA and IAA. In different organs of A. dahurica, most members of the NAC family had higher expression in root phloem, followed by root xylem. This study lays a foundation for further research on the function of A. dahurica NAC transcription factor and for solving the biological problems of A. dahurica.


Subject(s)
Angelica , Computational Biology , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/metabolism , Stress, Physiological , Transcription Factors/metabolism
2.
China Journal of Chinese Materia Medica ; (24): 3782-3791, 2016.
Article in Chinese | WPRIM | ID: wpr-307086

ABSTRACT

This research is to analyze the resourceful chemical composition in different tissues (root, stem, leaf and flower) of Abelmoschus manihot and evaluate their utilizing value. The flavonoids, soluble polysaccharides, cellulose, nucleosides and amino acids in the different tissues of A. manihot were determined by HPLC coupled with UV-Vis spectrophotpmetry, and UPLC-TQ/MS. The flowers are rich in the resourceful chemical compositions of flavonoids which mainly consist of hyperoside, isoquercitrin, cotton-8-O-glucuronide, myricetin, quercetin-3'-O-glucoside, rutin and quercetin. The total content of these flavonoids is 25.450 mg•g-1 in the flowers, while they are trace in the other tissues.Different tissues of A. manihot are rich in soluble polysaccharides and celluloses and the stems have the highest content(19.76%) of soluble polysaccharides, while the roots have the highest content (29.88%) of cellulose. Total of 21 amino acids and 9 nucleosides were detected in this plant, and the flowers have the highest content of amino acids(4.737 mg•g⁻¹), while the leaves have the highest content of nucleosides (1.474 mg•g⁻¹). A. manihot is rich in the resourceful chemical compositions, and its constituents and contents are various in different tissues of this plant.The results provided a scientific basis for the utilization and industrial development of A. manihot plants.

SELECTION OF CITATIONS
SEARCH DETAIL